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A new formulation is given for the problem of the contact between several 
deformable bodies ) and its equivalence to a convex programming problem is 

proved. On the basis of known results, theorems about the existence and un - 
iqueness of the solution are established for the case of linear elasticity theory 
and the deformation theory of plasticity without unloading. Constraints are 
set on the external actions assuring the existence of a solution in the absence 

of a clamped part of the boundary, and their mechanical interpretation is given. 
This paper is a continuation and development of the investigation in [ 11. 
The Signorini method [ 21 is used, which is substantially the principle of 

possible Lagrange displacements in the presence of unilateral constraints. Out 
of the large quantity of papers devoted to the Signorini problem and its ex - 

tensions, we note [ 3 (6 1. 
The formulation developed below permits the application of the numer- 

ical methods of optimization theory (nonlinear programming) to the solution 
of contact problems. The numerical solution of some specific contact prob- 

lems is given in [ 7 , 10 1; let us note that the deformability of the stamp in 
[ 7 1, however, was taken into account on the basis of a Winkler model and its 
generalization (an analogous idea is used in [ 8 ] ) , while the method of sol- 
ving problems in [ 9, lo] is the method of direct search without analysis of the 

existence and uniqueness conditions for the solution. 

1. Formulatfon of the problem, Let there be several solid deformable 
bodies of finite dimensions occupying the domains Q’,. . . , Qnl with the boundaries 

S’=-ZY, . . .) SM = i3QM. Let us assume that the bodies are in contact at points 

in the undeformed state, or along pieces of surfaces whose shape and size are determined 

from geometric considerations. 
To simplify the notation everywhere below (where possible ) , we agree to omit the 

superscript when speaking about a specific body and the parameters referred to it ; if it 
is a question of two bodies making contact, we shall omit the superscript governing the 

number of one of the bodies and will replace the number of tne second body by a prime. 
Thus, let the boundary ~7 of one of the bodies consist of three pieces : S = s, U. 

& u SC . We shall assume conditions of classical type 

U(F) I- g(r), FE 8, (1.1) 

Gii (u) vj = pi (r), F E s,, 

to be given on 3, and So . Here r is the radius vector of points Q relative to the 
common coordinate system for all bodies, u (F) is the displacement vector of the 
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point r,. Uij ( u are the stress tensor components related to the vector u == u (r) by ) 
using the equation of state whose form still has to be fixed, Vj are components of the 

unit vector normal to S external to 52; 6 (r) are dbsplacements given on S,, which 
are assumed zero for simplicity below, p are surface forces given on SO,and the re- 
peated Latin subscripts denote summation between one and n = 2,3. 

Let us take the hypothesis that the shape and size of the ultimate zones of contact 

along which the body Q can make contact with the other bodies, can be indicated from 
geometric and physical considerations, and let us denote the set of these zones by S,. 
We emphasize that only the ultimate sizes of the contact zones are assumed known, the 
actual contact areas are to be determined during solution of the problem. 

We also assume that 88, = S, n SO. This hypothesis is used in giving the 
mathematical foundation and is ordinarily satisfied in technical applications. 

Let pF denote the density of the volume forces acting on the body 9, then the 
problem, in the general case, consists of determining the state of stress and strain of each 
of the bodies Q when the system of these bodies is subjected to the effect of surface 
and volume forces with densities P, pF1, . . . . PM, pFM, as well as the size and 
shape of the contact zones and the contact pressure distributed over these zones. In such 
a general formulation, the problem may not have a solution at all, and if a solution 
exists, then it can turn out to be nonunique. The existence and uniqueness theorems 
will be established below for the case of linear elasticity theory and for deformation 

theory of plasticity without unloading. 

2. Analysis of the boundary conditions in the contact zone. 
Let us examine two bodies Q and 9’ making contact, and let s,, ~7,’ denote the 

ultimately possible contact zone. We shall assume the shapes of the surfaces s, and s,’ 

not to differ very strongly (the more exact meaning of this hypothesis will be clarified 
below ) . The equations describing the surfaces s, and 8,’ are taken in the form 

Y (r) = 0, Y’ (r’) = 0 (2.1) 

where r, r’ are the radii-vector of points of the surfaces S,: and S,‘. 
Let us select the functions y, y’ in such a manner that the conditions 

Y (r) > 0, if r@CJ,Y (r) <O for rEQ (2.2) 

would be satisfied (the conditions are analogous for the function yl ). 
Because of deformation of the bodies Q and Q2’ the surfaces SC and S,.’ vary. 

Let us prove that the distortion of the shape of the body boundary is determined in a 
first approximation by normal (along the normal) displacements of particles lying on 
the boundary. For definiteness we consider the body ti. Let ro be the radius-vector 
of particles of S, prior to deformation, and let r be the radius-vector of the same par- 

ticles after deformation ; then we have 

r = ro + U (ro) (2.3) 

It follows from (2.1) and (2.3 ) that 

Y (r - u (ro))= 0 (2.4) 

Taking the same hypothesis about the smoothness of Y as in [ 11, we linearize 
(twice) the dependence (2.4) with respect to u 
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cp b-7 ro) - Uvn (7.0) = 0 (2.5) 

We have here introduced the notation 

cp (r, r0) = Y (r) / 1 grad Y (ro) ly uvn = uv 

v (r) = grad Y (r) / I grad Y (r)l 

(2.6) 

The dependence (2.5) means that the shape of the deformed boundary is determined, 
in a first approximation, by the normal displacements of the particles on it. 

‘. I We now obtain the boundary conditions on s,, SC’ in a first approximation. Let 
F~ be the radius-vector of points of SC’ prior to deformation ; because of the deformation 

governed by the displacement field u’ , these points occupy the position 

r* = ro’ + U,’ (?.‘o)v’ (?-‘0) S ro’ + z&’ (r,‘) (2.7 ) 

Let us drop a perpendicular to the surfaces, from the point r* . Let FOO denote 
the radius-vector of the intersection of this perpendicular with S, . The following in - 
equality holds 

uvn (roe) < 6* f (r* - roO) v koo) (2.8 1 

Evidently roe = r,,. (ro’, z+,‘) . The purpose of the subsequent reasoning is to lin- 

earize this dependence, as well as condition (2.8 ) with respect to the normal displace- 
ments and the magnitude of the gap 1 ro’ - r. 1, where fo is the radius vector of points 

of intersection of the perpendicular drawn from the point ro’ to the surface SC7 with the 
surface S,‘. 

With the accuracy assumed,it is possible to replace roe by r. in (2.8). Indeed, 
it is easy to compute that 

(r* - ~oo)V (LOO) - k* - ro) v (TO) = 0 (I p. - roe I2 + 
@O - LOO) (r0' - r. + Cl, (r,‘)) 

(2.9 1 

by using the assumption about the boundedness of the second derivatives of Y . 
Performing the manipulations mentioned, we obtain the inequality 

(~‘~a (r0') + TO' - ro) v PO) - hn boo) > 0 (2.10) 

V r. E S,, ro’ = ro’ (ro) 
from condition (2.8 ) . 

Replacement of GW @DO) b y qn (Fo) is valid only under an additional assump- 

tion about the smallness of the strain (the first derivatives of the displacement ) , which 
is valid in the case of geometrically linear theories to which we limit ourselves here. 

The dependence I-~’ (ro) is determined from the formula Fo’ = FO -k to grad 
Y ho). where to is found from the equation 

Y’ (r. + t grad Y (ro)) = 0 (2.11) 

Following the general method, let us replace (2.11) by a lineaiizd equation in t, 
which when solved yields 

ro’ (ro) = r. - cp’ G-07 ro) v (~tl)l(V’ (Fu) v b-0)) (2.12) 
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Interchanging the roles of the bodies Q and fi’ we obtain 

(r& (rr, (r-s’)) + Fo (To’> - r’o - r+,’ (r-0’) > v’ (Fo’) > 0 
(2.13) 

Let us assume that the scalar product of the difference between the unit normal 
vectors to .r, and 8,’ by the displacement vector and the vectors of the initial gap 

To’ (F.0) - F-o? r-0 (ro’) - 7.0’ is of second order of smallness with respect to the normal 
displacements of points of the surfaces s, and s,’ and the magnitude of the gap be- 
tween the bodies, then conditions (2.10 ) and (2.13 ) reduce formally to one condition 

uy, + uln < 6 (2.14) 

The first of the forms of condition (2.14 ) can be used in solving specific problems 
when the independent variable is ~~ E s,, 6 = (F,’ (ro) - ro) v (F~), or the second 
possible form of this condition can be used when the independent variable is Fo’ E 

s,‘, 6 = (Fo (F,‘) - Fo’) V’ (F,‘) . Th e i d ff erence between the results will be of second 

order of smallness with respect to the magnitude of the initial gap and the normal dis- 
placements of points of the boundary. 

3. Reduction of the problem to a variational inequality. Let 
us first consider the case when the bodies are linearly elastic, and we write the relation 

between the stress and strain for the body 9 in the form 

uii cu.) = aijkhakh (n) (3.1) 

where eijrh is the tensor of the elastic moduli possessing ordinary properties of sym- 
metry and positive definiteness and generally dependent on points of the domain 19. 

The strain tensor components eij are related to the displacement vector by the Cauchy 

formulas Eij = l/z (Ui,j + u~,~). 

We shall assume that 

aijkhEL”(Q), @‘ELM (3.2) 
Pi E L” (!A), Ui E L2 (Q), Eij (U) E L2 (Cl) 

then all the manipulations performed above will be valid. Let us introduce the func - 

tional space 

v*={uIV=U(F), FEN; u(F)=O,FE&; vEH1(S-&} (3.3) 

where Hr is the Sobolev space of functions possessing generalized summable-square 

first derivatives. 
Formulation of the problem in differential form is 

- & [%jkh&kh (@I = @i 
I 

(3.4) 

It is assumed that conditions (1.1) are satisfied, and moreover 

nvn +~l~n<6+oii@)vi-=-7 ~vTl+G%=&+o~~o, (JT =o (3.5) 

‘Jv (u (ro)) = ov (u’ (F (ro))) 

(ov = UijVfVj, (UT)i E UijVj - U,Vi) (3.6) 
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where r. E Sea, r = r-5 (r,,) is defined in conformity with (2,12), the superscript p 

depends on CI and equals the number of that body Q with which @ is in contact on 
a given piece of the surface SC- 

Let us multiply each of the equations (3.4) by uir where u is an arbitrary element 
of the space V,, let us add the results obtained, and let us integrate over the domain 

$I. Applying the Gauss - Ostrogradskii formula and utilizing (1.1) , we find 

‘* (% ‘> = L* (v) + S $j (U) ViYj dS 
se 

(3.7 1 

L*(v) = SpFvdn -j- s PvdS 
Q SC 

Let us set 0 = zz in (3.7 ) and let us subtract the expression obtained from (3.6 ) ; 
by using the notation introduced we obtain 

a* (% u - u) = L, (u - u) + J Uij(U) (Vi - Ui) Vj d.S 
c 

(3.3 1 

Let V denote the direct product of the spaces v, introduced above, i, e., 

v=v*qL.*@~~ 

Let us introduce a subset of functions K in the space V by means of the formula 
(:u is an arbitrary element of V ) 

K=(~fEV;V~+&\<6) (3.9) 

The superscriptsa ,and 6 determine the numbers of the bodies touching in pieces 
of their boundaries. Adding all the equations (3.8 ) , we find (here and below the sum- 
mation is over all numbers of bodies) 

a(u,v-U)==L(U-- U) _t “I (T$j (U) (Vi - Zli) Vi dS (3.10 ) 

(a (Z& v) = Xa, tu, v), L (v) = K z&+ (St) 

Let us separate the last sum in (3.10 ) into pairs of terms, each of which corresponds 

to a pair of touching surfaces SC and SC1 , and let us examine one of these pairs in detail 

( O+j (‘) (vi - zCi) Yj dS -I_ S Uij (U’) (Z’i’ - Iii’) Yj’ diP 

4 SC’ 

(3. II ) 

We note first of all that 

oij(u)(ui -ui) vj = ~,(u)(vyfi - llvn)$- GT (ll)(u'f - (IT) (3.12) 

where u,,, is the normal component of the vector v (the projection on the normal v) 

VT is the projection of u on the tangent plane. Because of conditions (3.5 ) and (3.6 1, 

the second term in (3.12) is zero. We now recall that V N --VI, 0, = a, by as - 
sumption , and that the difference between the surfaces can be neglected in calculating 

surface integrals in the geometrically linear theory. There results from all the above 
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that the expression (3.11) has the form 

(3.13 ) 

By assumption u = (u” (r”), . . . , uM (I”~~)) is the solution of the problem (3.4) 
- (3,6), therefore u E K. Now, let u = (~9 ($) _ . . , t,@ (r”)) in (3.10 ) and 
(3.12 ) belong to K, then 

Vxn -Fe 4n < 6 

and, therefore, the integrand in (3.13 ) is nonnegative because of (3.5 ) and (3.6 ) , 

Therefore, the solution of the initial problem (1.1). (3.4 )-- (3.6 ) satisfies the vari- 
ationalinequality resulting from (3.10 ) and the nonnegativity of the pair of terms (3,U) 

a (u, v - n) > L (y - @>, ‘~JY E K, II E K (3.14) 

The following theorem holds : The solution of the variational inequality (3.14 ) , if 
it exists and possesses second derivatives (although generalized ) , will satisfy all the 

equations and conditions (I.. 1)‘ (3.4) -_ (3.6). 
The derivation of (3.4), the second condi~on in (1.1) and (3,5 ) is essentially no 

different than the derivation of analogous conditions and equations in [ 6 1. The new 

condition (3.6 ) , as compared with the problem in [ 6 1, results from the inequality (3.14 ), 

equation (3.4) and conditions (1.1) and (3,5) for a suitableselection of the components 
of the element u = (ur, , f *I $f); We shall not present the procedure for deriving 

condition (3.6 ) because of the simplicity of these manipulations. 

Rem ark . The whole reasoning holds with slight insignificant changes even for the 
case of the deforma~~ theory of plasticity wi~~t ~~load~g (the physically nonlinear 
theory of elasticity ) in which the relation between the stress and strain has the form [ll I 

oij ‘ZZ hs8ij + 2p&ij - 2~(O(e,,)~~j (3*15) 

where 2, and f~ are Lame parameters and the constraints on the unction w (e,) are 

mentioned in [ 1,6 1. 
In this case the variational inequality has the form 

u (Zl, U - u) - Dj (U ‘ li - 7.4) > L (u - u) (3.16 ) 

Dj (U, U- 24) = .)ILIISO(eu(U))eij(V-U)e,j(V)dR 
L1 

where a (u, vf and L fv) are determined, as before, by the formulas presented in 
parentheses in (3.10 1. The later D denotes the Gateaux derivative of the functional 

j (?I) at the point LC in the direction c - U. 

4. Reductfon of the problem to mfnfmfzatfon of the functfonal. 
First, we assume that all 5, + $, then the positive definiteness of the bilinear form 

a (u, V) on v fol.lows from the Kom inequality for each of the forms a, (U, V) : 

a (13 u) > c II v 1J2, VU E V, C = const > 0 

The form L (v) is continuous on v in the constraints formulated above on, pF, p. 

The symmetry and continuity of the form a (u, U) on V is obvious. 
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It can be verified that the set K defined by (3.9) is convex in V . The closedness 
of this set results from the Lions theorem on traces [ 12 1. The following theorem, which 
is a corollary of more general results [ 13 ,141, therefore holds : 

The or e m 4.1. The solution of the variational inequality (3.14 ) is equivalent 
to the problem of minimizing the functional 

J (u) = l/z a (u, u) - L (u) 

in the subset K of the space Tr. 
By using the results of [ 1,6 1, it can be proved that the following holds : 

Theorem 4.2. The solution of the variational inequality (3.16) is equivalent 
to minimizing the functional 

J (u) = ‘/2 a (0, u) - L (u) - j (u) 

in the subset K of the space V. 
Introducing the spaces adjacent to V in subsets of rigid displacements, as is done 

in [ 151, analogous theorems can be established even for the case when some or all of 
the bodies Q have no clamped sections of the boundary. Difficulties occur in the re- 

alization of this procedure, which are associated with setting up additional constraints 
on pF, P . A simpler path (which will indeed be used) is direct utilization of the 

variational inequalities (3.14) and (3.16) and the theorems relative to these inequali- 
ties, which are established in [ 16 ] . 

6. Existence and uniquener: theorems. Let us first nokthat the exis- 
tence and uniqueness of the solution in the conditions of Sect. 4 result from more gen- 
eral results which can be found on monographs [ 13,141. We consequently examine the 
case when for all c1= 1, . . ., hf we have s,” = 0. We shall use the following 
theorem [ 16 1. 

Lions -Stampacchia theorem. Let the following conditions be satisfied: 
1) The bilinear form a (u, ~1 in V is continuous 

I~(~~~)I\<ClI~1111~~1, VUEV, GEV (5.1) 

2) The norm in v is equivalent to the norm p0 (0) + p1 (v), where PO (2.1 is the 
norm in V relative towhichthespace V ispre-Hilbertian,and p1 (L.) isaseminormin V; 

3 ) The space 
Y = {v E v ( p1 (v) = 01 (5.2) 

is finite- dimensional. 
4) There exists a constant c~ such that 

infv p. (v - Y) G Cl& (a) (5.3) 

5 ) The form a (u, 23) is semi-coercive, i. e., 

a (v, v) > czp12 (r), Vv E V, c2 = const > 0 (5.4) 

6) The set K is closed and convex in V and contains the point (0) (the zero 

element of the space V ); 
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7) The form f, (2’) is linear and continuous in V, where 

L (!J) < 0, VYEY(-)K (5.5) 

Then the variational inequality (3.14 ) has at least one solution. 
Let us confirm that all the conditions of the theorem formulated are satisfied in the 

problem under investigation. Let us note that 

(5.6) 

can be selected as the norm in V , 

The equivalence of the norm (5.6 ) to the direct -product norm used above follows 
from the Korn inequality which is valid for each of the bodies Q . We set 

(5. ‘1) 

Evidently PO (2’) is a norm in L,; with respect to this norm Hr, and therefore , Vis 
also pre-Hilbertian, The quadratic form p12 (2~) is a semi-norm in v since&U (y) = 0, 
where Y is the displacement of the body 62 as if it were absolutely rigid. The space 

Y’defined by (5.2) is finite, since it is the direct product of finite spaces of the form 

Y”=(y”fya=.+bXra, a=eonst, b=const) (5.8) 

Compliance with the inequa~ty (5.3 ) is verified by the method of assuming the 
opposite. The semi-coercivity of the form @ (k, VI in the sense of (5.4) is a corollary 
of the Kom inequaLity for each of the bodies St. Condition 6 ) of the theorem has been 

established above. 

Let us examine the constraint (5.5 ) in more detail and let us clarify its physical 
meaning. Let us note that (5.5) actually has the form 

I, (y) < 0, 7i’y E JV n Ji- ‘\ G (5.9) 

where G is the displacement of the system of bodies ~1, . . ., ~fir as a single rigid 

whole. In fact, the following equalities hold : 

(5.10) 

which are the equilibrium conditions for the system of bodies {Q I as a whole. Sub- 

stituting the expression for y” from (5.8 ) in place of y = (y:, . . ., y”) in (5.51, and 
hence using (5.10 ) , we arrive at (5.9 ) , 

Now it is easy to give a mechanical treatment of the condition (5.9): the work of 
the external forces on the displacement of each of the bodies Q as a rigid whole from 

the state in which this body is prior to deformation is strictly negative, i. e., the con - 
dition (5.9 ) is the stability condition for the system of bodies prior to deformation, 

The state of the system of bodies {S) can naturally turn out to be unstable as a 
result of deformation, Assuming the existence of a solution (a set of solutions v ) of 
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the problem posed and defining the set 2 by means of the formula 

2 = {y 1 y E y; u $- y E K, Vu E V) 

we find 

L (Y) a 09 VYE%\C (5.11) 

from the variational inequality (3.14) and condition (5.10 ) . 

Condition (5.11) means that after deformation the system of bodies (62) turned out 
to be in equilibrium which is stable or indifferent. 

The sets Y 0 K and Z do not generally agree since it does not at all follow that 

y E li from the condition u + Y. E E . 
Therefore, it can be said that the condition (5.9 ), which is a slight extension of 

the “strong Signorini hypothesis” [3,4], assumes the mutual position of the bodies 
1521 to be fixed prior to deformation; condition (5.11) fixes this mutual arrangement 

of the bodies (91 after deformation and is a consequence of the nonlinearity of the 
problem under consideration. 

We conclude on the basis of the Lions - Stampacchia theorem that there exists at 

least one solution of the problem posed, and the difference of two solutions belongs to 

a set of displacements of the system of bodies as a rigid whole. 
The results of Sect, 5 on the existence and uniqueness of the solution carry over 

without change to the case of the deformation theory of plasticity (3.15). It is neces- 
sary to use the more general Minty - Browder theorem on monotonic operators [17,18 1, 
compliance with whose conditions follows from the results elucidated in [ 6 ] and Sect. 

5 of this paper, in place of the Lions - Stampacchia theorem. 
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